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Graded decisions in the human brain

Tao Xie 1,2, Markus Adamek 1,2, Hohyun Cho 1,2, Matthew A. Adamo 3,
Anthony L. Ritaccio 4,5, Jon T. Willie 1,2, Peter Brunner 1,2,4 &
Jan Kubanek 6

Decision-makers objectively commit to adefinitive choice, yet at the subjective
level, human decisions appear to be associated with a degree of uncertainty.
Whether decisions are definitive (i.e., concluding in all-or-none choices), or
whether the underlying representations are graded, remains unclear. To
answer this question, we recorded intracranial neural signals directly from the
brain while human subjects made perceptual decisions. The recordings
revealed that broadband gamma activity reflecting each individual’s decision-
making process, ramped up gradually while being graded by the accumulated
decision evidence. Crucially, this grading effect persisted throughout the
decision process without ever reaching a definite bound at the time of choice.
This effect was most prominent in the parietal cortex, a brain region tradi-
tionally implicated in decision-making. These results provide neural evidence
for a graded decision process in humans and an analog framework for flexible
choice behavior.

Many cognitive processes, including decision-making, involve delib-
eration over a brief period of time. Psychology, neuroscience, and
neuroeconomics have debated over how the process of deliberation is
implemented at the neural level. It has been found that many brain
regions track the evidence accumulated for a decision1–13, which has
been captured by a dominant, drift-diffusion model of decision-
making14–16.

However, it remains unclear how the accumulation process con-
cludes. The traditional view posits that choices are made in an all-or-
none manner14–25, when a neural signal that represents a forming
decision reaches a fixed bound (Fig. 1a). More recently, this view of the
decision process has been criticized. In particular, it has been ques-
tioned whether the concept of a decision bound provides an inclusive-
enough account of behavioral and neural data26–33. For instance,
humans and animals generally make decisions under time constraints,
which exert limits on the available decision time1,3,6,34–39. These con-
straints have been modeled by collapsing bounds that decrease their
levels over the decision time28,40. Furthermore, there are alternative,
multidimensional attractor network models that do not require a
definition of a bound41–44. In attractor network models, decision-
related activity evolves in a multidimensional and hierarchical space

involvingmany brain regions and neurons until it reaches a stable state
defined by time constraints, accuracy requirements, and other
decision-relevant variables. Both the collapsing and attractor network
models allow for decision-related activity to be graded by evidence
accumulated at the time of choice (Fig. 1b).

The two prevalent models (Fig. 1) have been difficult to tease
apart. Computational models often make similar predictions of
choice behavior even though they invoke fundamentally different
neural mechanisms25,28. The models could be distinguished using
direct recordings of neural activity, but such recordings have thus far
only been conducted in particular brain regions of non-human
primates1–5. Since specific brain regions encode different aspects of
forming decisions, a conclusive answer to how the brain represents
the entirety of the decision process in humans has remained elusive.
On the other hand, human studies, which have used non-invasive
modalities6–13, could only access broadly distributed low-frequency
signals, which provides a coarse perspective on the underlying neural
processes.

To address this issue, we have recorded local field potentials
(LFPs) directly from multiple regions of the human brain during per-
ceptual decisions (Figs. 2 and3). The broadcoverageof the intracranial
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recordings and their high fidelity enabled us to characterize the neural
dynamics and the brain regions involved in decision formation.

Results
Decision tasks and behavior
We recorded the neural dynamics underlying deliberation using
intracranial electrodes (Fig. S1) while eight naive human subjects
assessed temporally defined quanta of decision evidence (Fig. 2). The
evidence quanta constituted Poisson-distributed click sounds deliv-
ered into the right and left ears45. The subjects communicated their
choices usingmovements of two distinct choice kinds (a saccade or a
button press) in two task contexts (congruent or reversed). In the
congruent task context (Fig. 2b-top), subjects implanted with elec-
trode grids over the left hemisphere made a saccade (SC) choice to a
left target if they heard more click sounds delivered into the left ear,
andmade a button press (BP) choice with the right hand if they heard
more click sounds delivered into the right ear. This contingency was
flipped in the reversed task context (Fig. 2b-bottom). In both choice
kinds, subjects were free to indicate their choice following the

stimulus onset by making the respective movement. The stimulus
ceased upon a choice. A total of 13 sessions were recorded in the two
task contexts (Fig. S1).

Fig. 2 | Neural recordings, tasks, and behavior. a We recorded the intracranial
activity of the human cortex during fixation, saccadic, and manual responses.
b After acquiring a fixation cross, subjects listened to a binaurally presented
auditory stimulus. Subjects decided whether they heard more click sounds in the
left or right ear. In the congruent task context, subjects (with electrodes implanted
in the left hemisphere)made a saccade (SC) to the left side if they heardmore clicks
on the left, andmade a button press (BP) if they heardmore clicks on the right. This
sensorimotor contingency was flipped in the reversed task context. Subjects were
free to indicate their choice following the stimulus onset by making the respective
movement. The auditory stimulus ceased upon a choice. A total of 13 sessions were
recorded in 8 subjects in the two task contexts (n = 13). Specifically, 7 subjects
performed the congruent task, 6 subjects performed the reversed task, and 5 sub-
jects performed both tasks. c Decision variable (DV) computation during an
example trial. Red/blue dots indicate auditory clicks in the left/right ears. d DV

(mean ± s.d., n = 13) as a function of time, separately for trials that resulted in a SC
(red) and BP (blue) choices. One second following the stimulus onset, the DV
reached 3.9 ± 2.4 and −3.4 ± 1.8 (mean ± s.d., n = 13) for SC and BP choices, respec-
tively. e Proportion (mean ± s.e.m., n = 13) of SC choices as a function of the DV at
the time of choice. The psychometric curve fitting the data of each subject
explained 92.4 ± 3.2 % of the variance in the choice behavior (mean ± s.d., n = 13).
f Reaction time (mean± s.e.m., n = 13) as a function of the absolute value of the DV
slope for SC (red) and BP (blue) choices. The slope of this relationship was
−7.4 ± 6.8 and −10.5 ± 8.5 (mean± s.d., n = 13) for SC and BP choices, respectively.
g,h Eye gaze andhand EMG signals (mean ± s.d.) for trials that resulted in a SC (red)
and BP (blue) choices, respectively. Around the time of the choice, the separation,
measured by Cohen’s d, was 10.5 ± 3.3 and 3.0 ±0.7 (mean± s.d., n = 13) for the eye
gaze and EMG signals, respectively.

Fig. 1 | Nature of developing decisions. a One class of models posits that choices
are made when brain activity reaches a fixed bound, which results in all-or-none,
switch-like choices. b An alternative view is that the choice process is generally
graded. The dashed vertical line represents the time of choice. The LO (low), ME
(medium), and HI (high) levels indicate the amount of evidence for a choice.
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The temporally defined quanta of evidence and each subject’s
choices provided a decision variable (DV; Fig. 2c) that captured the
subjects’ decisions, as in previous studies15,46. The DV faithfully
explained the subjects’ choices across the sessions. First, as expected,
the polarity of the DV diverged over time according to each subject’s
choices (Fig. 2d). Crucially, the DV at the time of choice captured the
probability of choosing either alternative (Fig. 2e). Moreover, in line
with chronometric predictions of the drift-diffusion model, the sub-
jects’ reaction time (RT) was anti-correlated with the slope of the DV
(Fig. 2f). Subjects made their decisions rapidly (Fig. S6), well within the
2 s limit.

Throughout the deliberation, the subjects maintained a fixation
on a central target. Moreover, the subjects responded with a single
movement on each trial (i.e., a SC or a BP choice). We validated this
performance using electromyographic (EMG) recording of hand
muscles and continual recordings of the eye gaze. Indeed, in all valid
trials, deviations in horizontal eye gaze were only observed during SC
choices (red in Fig. 2g), whereas increases in the hand EMG were only
observed during BP choices (blue in Fig. 2h). This performance stan-
dard was maintained during the reversed task (Fig. S2).

Broadband gamma activity reveals graded choices
We collected data in subjects with electrodes implanted into brain
regions implicated in decision formation, including parietal, frontal,
premotor, and motor regions (Figs. S1 and S3e). We recorded neural

signals from these implanted electrodes throughout the decision
process. We specifically evaluated broadband gamma (henceforth
referred to as γ) activity, whichhas been shown to be tightly correlated
with multi-unit spiking activity47,48.

We first identified the effector-modulated regions, which showed
modulation of γ activity around the time of choice compared with
baseline during the SC and BP choices. We assessed the regions in
which a modulation was observed during both choice kinds (SC&BP-
modulated; Fig. 3a) aswell as regions that showedmodulation during a
specific choice (SC-modulated, BP-modulated; Fig. 3b). The cortical
areas with significant γ modulation are quantified in Fig. S3a, c.

The high temporal resolution of the intracranial recordings,
together with their broad cortical coverage, allowed us to investigate
the spatial-temporal dynamics of the forming decisions. We investi-
gated these dynamics by averaging γ activity across all effector-
modulated regions (Fig. S4c). We found that the average γ activity
ramped up gradually (Fig. 3a, b, middle; Fig. S5a). Specifically, we
found that the time course of γ activity correlatedwith the time course
of the DV during each decision period (SC: average R =0.05,
t(2319) = 9.4, p = 8.4 × 10−21; BP: average R = −0.06, t(2698) = −13.4,
p = 8.1 × 10−40; two-tailed t-tests). Furthermore, the distribution of
reaction time showed a right-skewed trend (Fig. S6). While the gra-
dually ramping γ activity is consistent with diffusion models of
decision-making14–16, the conclusion of the accumulation process is
not. In particular, we found that γ activity was strongly graded by the

Fig. 3 | Effector-related broadband gamma (γ) signals index developing deci-
sions and remain graded during choice. a Decision signals in SC&BP-modulated
regions. Left panel: The yellow symbols indicate SC&BP-modulated electrodes that
show significant (p <0.05, corrected using false discovery rate, one-tailed rando-
mization tests) broadband gamma (γ) modulation during saccade (SC) and button
press (BP) choices compared with baseline. Middle panel: Session-mean (±s.e.m.,
n = 13) γ activity over all SC&BP-modulated electrodes. The signals are aligned to
stimulus onset (left dashed line) and movement onset (right dashed line). The top
(bottom) panel shows γ activity for trials that resulted in a SC (BP) choice. Right
panel: Spearman’s correlation R between trial-by-trial values of DV and γ activity
around the time of choice (green bars). The individual R values in the histogram
represent the correlation for individual sessions (n = 13) and are presented sepa-
rately for SC (top histogram) and BP (bottom histogram) choices. The color-filled
bars denote significant R values (p <0.01, one-tailed randomization tests). The
triangle denotes the average R. *p = 7.3 × 10−3 and p = 1.5 × 10−3 for SC and BP

choices, respectively (two-tailed t-tests). b Decision signals in SC/BP-modulated
regions. Left panel: The red and blue symbols indicate electrodes that show sig-
nificant (p <0.05, corrected using false discovery rate, one-tailed randomization
tests) γmodulation during SCandBPchoices comparedwith baseline, respectively.
Middle-right panels: Same analyses and format as (a), separately for the SC-
modulated andBP-modulatedelectrodes. *p = 7.5 × 10−3 andp = 4.7 × 10−3 for SCand
BP, respectively (two-tailed t-tests). c, d Session-averaged (±s.e.m., n = 13) correla-
tion between the γ activity and DV at the time of choice as a function of time,
aligned in the samewayas in (a,b). The blue and red lines show the averageR for BP
and SC choices, respectively. The black dots near the time axis mark the times
during which the correlation was significant (p <0.01, n = 13, one-sample two-tailed
t-tests), while the gray dots indicate no significant correlation (p >0.01, n = 13, one-
sample two-tailed t-tests). c, d provide data for decision signals in the SC&BP-
modulated and BP/SC-modulated regions, respectively.
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DV immediately prior to a choice (green bar in Fig. 3). This finding is at
odds with the traditional formulation of the drift-diffusion model16,
which posits that neural activity at the time of choice reaches a bound
instead of being graded.

We quantified this graded effect at the time of choice (green bar)
using Spearman’s correlation (R) between γ activity and DV for data of
each session. We found that the effector-modulated regions were
significantly graded by the DV (Fig. 3a, b). The regions modulated by
SC and BP choices had an average R =0.12 and R = −0.12, respectively
(t(12) = 3.2, p = 7.3 × 10−3; t(12) = −4.1, p = 1.5 × 10−3; two-tailed t-tests,
Fig. 3a). The regions modulated by SC or BP choices showed similar
effects (average R =0.12, t(12) = 3.2, p = 7.5 × 10−3; average R = −0.13,
t(12) = −3.5, p = 4.7 × 10−3; two-tailed t-tests, Fig. 3b). Furthermore, we
found that BP-modulated regions were significantly graded by the DV
at the time of SC choices, and the SC-modulated regions were sig-
nificantly graded by the DV at the time of BP choices (Fig. S7a).

We evaluated the timing of this effect with respect to choice
(Fig. 3c, d). For electrodes modulated by SC and BP, the correlation
between γ activity and DV at the time of choice was significant for the
300 and 240ms prior to movement onset for BP and SC choices,
respectively (p <0.01, Fig. 3c). For electrodes modulated by SC or BP
(Fig. 3d), the corresponding time was 300 and 40ms prior to move-
ment onset, respectively. Notably, the two plots show that the evi-
dence accumulation process ceases following a choice. For both SC
and BP choices, there is a marked decrease in the correlation values
immediately following a choice. This result argues against potential
post-processing that could take place during involved decisions.

Specific test of the bounded hypothesis
We specifically tested the hypothesis that the neural signals that
encode the forming decisions reach a fixed bound at the time of
choice. The null hypothesis was set by a modeled DV that reaches a
fixed bound at the time of each choice (Fig. 4a). We regressed the
recorded γ activity from all effector-modulated electrodes (same as
Fig. 3a, b) on thismodeledDV (Fig. S4d). If the null hypothesiswas true,
we would not expect a significant correlation between the regressed γ
and the raw DV at the time of choice. Yet, the graded effect was also
prominent in this analysis (Fig. 4b). Specifically, we found that the
regressed γ activity ramped up as a function of time, but was strongly
graded by the DV around the time of choice (green bar in Fig. 4b). We
again quantified this graded effect by plotting the histogram of R
values over the individual sessions (n = 13, Fig. 4c). The regions
modulated by SC and BP choices showed a significant session-average

of R =0.14 and R = −0.12, respectively (t(12) = 4.1, p = 1.5 × 10−3;
t(12) = −4.7, p = 4.8 × 10−4; two-tailed t-tests). The regionsmodulated by
SC or BP choices showed a similar significant result (SC: average
R = 0.14, t(12) = 3.6, p = 3.9 × 10−3; BP: average R = −0.14, t(12) = −4.8,
p = 4.3 × 10−4; two-tailed t-tests). To control for the possibility of
overfitting due to the high dimensionality of the linear model, we
performed a randomization test in which we randomly shuffled the
temporal relationship between the neural signals and themodeled DV.
This control analysis shows no graded effect and therefore rules out an
overfit (gray in Fig. 4c, Fig. S8). Thus, this analysis supports the alter-
native hypothesis that at the time of choice, the neural signals are
graded by the DV.

Graded signals across brain regions
We next investigated the specific brain regions that contributed to the
decision-related effects. Specifically, we identified the brain regions
that showed grading of γ activity around the time of choice. For
SC&BP-modulated regions (Fig. 5a; Fig. S3b), we found that BA40
(parietal cortex) has the most prominent contribution to the grading
of the γ activity. For SC/BP-modulated regions (Fig. 5b; Fig. S3d), we
found BA40, BA8 (including frontal eye fields) for SC choice; and
BA40, BA6 (premotor/supplementarymotor areas) for BP choice have
the most prominent contribution to the grading of the γ activity.

The graded effect was apparent in γ activity averaged across all
SC&BP- (Fig. 5c) and SC/BP-graded (Fig. 5d) electrodes. Notably, this
prominent effect was reliably observed in individual trials (see scatter
plots). AllR values shown in the scatter plots were highly significant for
SC and BP choices (SC&BP-graded regions in Fig. 5c: R =0.17,
p = 4.3 × 10−13 and R = −0.15, p = 7.8 × 10−12; SC/BP-graded regions in
Fig. 5d: R =0.26, p = 3.3 × 10−28 and R = −0.19, p = 2.0 × 10−21; SC&BP-
graded parietal region in Fig. 5e: R =0.17, p = 2.9 × 10−6 and R = −0.16,
p = 1.3 × 10−6; two-tailed Spearman’s correlation).

The graded nature of the subjects’ choices
The graded effect of γ activity byDV at the time of choice suggests that
subjects made their choices in a probabilistic manner, with varying
levels of supporting evidence or certainty. To test the validity of this
inference, we investigated how the subjects’ choice probability was
modulated by different levels of DV at the time of choice. As expected,
we found that the level of evidence substantiallymodulated the choice
probability (Fig. 6a) and that this graded modulation effect was sig-
nificant for SC and BP choices (F(2, 36) = 27.9, p = 4.8 × 10−8;
F(2, 36) = 43.1, p = 2.8 × 10−10; one-way ANOVA). Thus, the graded γ

Fig. 4 | Regression analysis rejects the null hypothesis of the signals reaching a
fixedbound. aModeledDVwith afixedbound.The value of themodeledDVramps
up linearly until it reaches a fixed bound at the time of choice associated with each
choice kind. b Regressed neural activity graded by DV at the time of choice. In this
analysis, the broadband gamma (γ) activity of all effector-modulated electrodes
(Fig. 3b) was regressed on the modeled DV as shown in (a). The regressed γ is
plotted on the ordinate as a function of time and averaged over the individual
sessions (mean ± s.e.m., n = 13). The signals are aligned to stimulus onset (left

dashed line) and movement onset (right dashed line). The top (bottom) panel
shows regressed γ activity for trials that resulted in a SC (BP) choice. c Same format
and analysis as in the histograms in Fig. 3. The shaded distribution results from a
randomization test. Left panel: SC&BP-modulated regions. *p = 1.5 × 10−3 and
p = 4.8 × 10−4 for SC and BP, respectively (two-tailed t-tests). Right panel: SC/BP-
modulated regions. *p = 3.9 × 10−3 and p = 4.3 × 10−4 for SC and BP, respectively
(two-tailed t-tests).
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activity also represents the probability of producing the respective
choice, indicating a continuum between the neural activity and beha-
vior during decision-making.

If the decision-related γ activity in the brain is related to the
amount of evidence for or the probability of making a choice, efferent
activitymight alsobedetectablewithin the effectorperipheral systems
that execute each choice49. We found modest (Fig. S9) but significant
support for anefferent effect. Specifically, the EMGactivity of the hand
muscles and the amplitude of the saccades made to the choice target

was significantly graded by theDV at the time of choice (BP: t(12) = 4.0,
p =0.0017; SC: t(12) = 3.1, p =0.010; two-tailed t-tests).

Together, these data reveal that the human brain represented
choices in an analog, gradedmanner (Fig. 6b) insteadof an all-or-none,
switch-like fashion.

Discussion
In this study,we recorded LFP activity directly from thebrain of human
subjects making perceptual decisions. The recordings revealed that
the human brain encodes developing perceptual decisions within γ
activity. Across response types (SC and BP), task contexts (congruent
and reversed), and analysis methodologies (model-free and model-
based), we found that the γ activity remained graded at the time of
choice, suggesting a graded instead of a definitive decision process.

Decision-makers live in dynamic environments with varying goals
and behavioral demands. To make effective decisions, individuals
must gather sensory evidence and use it to plan actions in a particular
context. The context must consider relevant stimulus sensory infor-
mation, relevant actions and their payoffs, and the mapping between
the stimuli and the actions33. This contextual processing demands a
flexible representation of the decision process. In this light, the
dominant, bounded model (Fig. 1a) likely applies to a subset of deci-
sions that are performed in stationary contexts, in which subjects
make many similar decisions consecutively. In natural settings, deci-
sions are almost exclusivelymade in new and dynamic contexts, which
include variable decision policies that rest on factors such as urgency,
reward expectation, speed-accuracy tradeoffs, stimulus-action

Fig. 5 | Individual brain regionsmodulated by the DV at the time of choice and
the decision dynamics. a Left panel: The yellow symbols indicate electrodes with
broadband gamma (γ) significantly (p <0.05, one-tailed randomization tests) gra-
ded by the DV at the time of choice for both SC and BP choices (SC&BP-graded
regions). Right panel: The bars show the proportion of electrodes within individual
Brodmann areas (BA). Thenumbers above eachbar indicate the number of sessions
(numerator) and number of subjects (denominator).b Same format as in (a) but for
electrodes with γ significantly (p <0.05, one-tailed randomization tests)modulated
by DV at the time of choice during SC (red, SC-graded regions) and BP (blue, BP-
graded regions) choices, respectively. c Left panel:Mean± s.e.m. γ activitywithin all
SC&BP-graded electrodes (n = 12). Right panel: Single-trial effects. The mean γ

activity around the time of choice (green bars) on each trial is plotted against the
corresponding DV value. *p = 4.3 × 10−13 and p = 7.8 × 10−12 for SC and BP, respec-
tively (two-tailed Spearman’s correlation). d Same format as in (c), but for signals
specifically graded by the DV at the time of choice during the SC (top) and BP
(bottom) choices within the SC-graded and BP-graded regions, respectively. The
plots represent mean± s.e.m. over the individual sessions (n = 13). *p = 3.3 × 10−28

and p = 2.0 × 10−21 for SC and BP, respectively (two-tailed Spearman’s correlation).
e Same format as in (c, d), but for BA40 (parietal cortex) electrodes graded by DV
during both choices (n = 6). *p = 2.9 × 10−6 and p = 1.3 × 10−6 for SC and BP, respec-
tively (two-tailed Spearman’s correlation).

Fig. 6 | Summary: The human brain can make analog choices. a Choice prob-
ability (n = 13) for the three levels of decision evidence (low, medium, high) for
saccade and button press (gray dots: each session; black dots: median across ses-
sions). Violin plots show probability density, and vertical lines indicate the first and
third quartiles. *p = 4.8 × 10−8 and p = 2.8 × 10−10 for saccade and button press,
respectively (one-way ANOVA). b Graded cortical signals. Left panel: Fig. 3b-right.
Right panel: Fig. 1b.
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mapping, and decision confidence33. The graded model (Fig. 1b), in
which neural activity does not need to reach a fixed level in the deci-
sion process, can accommodate these factors. Our task implements
these dynamic contextual and task demands by varying the mapping
between stimuli and actions (Fig. 2b). Indeed, subjects found the
decisions to be challenging, with 55.2% of all trials classified as valid
under our stringent acceptance criteria. Yet, the subjects were able to
make robust evidence-guided decisions, demonstrated by a defined
psychometric curve spanning the entire range of choice probabilities
(Fig. 2e). In these more general, dynamic decision situations, we have
found robust evidence for a graded nature of the decision pro-
cess (Fig. 1b).

The intracranial electrodes covered a large portion of the cortex,
which enabled us to inspect the regions contributing to the decision
formation. The decision evidence was found to be encoded across
multiple areas of the cortex, in particular parietal, frontal, and pre-
motor regions (Fig. 5). This multi-regional representation is expected,
given that the tasks required subjects to assess and integrate sensory
evidence, compare it across two accumulating systems, and accord-
ingly plan amovement. These aspects of the tasks have been shown to
map onto the respective brain regions50–58. Moreover, the broad
engagement of the nervous system during deliberation suggests that
sensory, cognitive, and motor processes do not function in isolation
but as a spatiotemporal continuum42,43,50,59.

Many accounts of decision-making assume that decision evidence
is tracked in a central cognitive module that is independent of the
effector systems that execute the respective choices60,61. Contrary to
this view, theories of embodied cognition have proposed that the
decision-making process can be offloaded to cognitive faculties and
neural circuits that implement the associated choices62–66. In our study,
we found representations of decision evidence in many brain regions
that encode choice, thus contributing to the theories of embodied
cognition. Specifically, our data show that decisions can be formed
within the same circuits that plan and execute the resulting choice. For
example, the graded effect was most prominent over parietal (BA40)
and premotor/supplementary motor areas (BA6) for BP choice; and
over parietal (BA40) and frontal eye fields (BA8) for SC choice (Fig. 5).
This distributed representation may preserve cognitive resources and
accelerate the production of action64–66.

The decision-related effect reported in our study cannot be
explained by a potential confound of sensory activity throughout the
task, for two reasons. First, we tested two distinct task contexts—
congruent and reversed (Fig. 2b), thus swapping themapping between
stimulus and response (Fig. S2, Fig. S3f). Second, prior to performing
the analysis, we excluded electrodes that were modulated by sound
clicks (Fig. S1e), thus avoiding the potential confound of sound-
induced neural activity.

The decision-related effect reported here cannot be explained
by a potential confound of motor activity or response vigor, for five
reasons. First, the effect was observed when the specific choice was
fixed (sorting trials by the SC or BP choices), indicating that the
graded effect was not an artifact of averaging potential purely motor
signals (Figs. 3 and 4). Second, the graded effect was found in SC&BP-
modulated regions and thus was not tied to a specific movement
(Figs. 3 and 4). Third, the γ activity ramped up gradually (Fig. 3,
Fig. S5), reminiscent of similar findings in the parietal reach region
and the lateral intraparietal region of non-human primates67. Fourth,
the decision-related grading could be detected already 300 ms prior
to a movement, and the effect was comparable across SC&BP-
modulated and SC/BP-modulated regions (Fig. 3c, d). And fifth, the
decision-related grading was strongest over the parietal cortex
(Fig. 5), which represents higher-order cognitive variables rather
than movements15,62,68,69.

We found that the grading of the gamma activity was accom-
panied by the graded probability of producing the respective choice

(Fig. 6a). This suggests that the gradingmay reflect a subject’s certainty
in their choice. This notion is supported by previous studies, which
found that the signals representing accumulated evidence also encode
a subject’s certainty or confidence in their decisions37,70.

There is emerging evidence that neural signals underlying per-
ceptual decisions may not be limited by a bound. This evidence
comprises electroencephalographic (EEG) recordings in humans6–13

and single-neuron recordings in animals1–5. However, EEG recordings in
humans predominantly capture low-frequency signals representing a
summation of electric potentials across many brain regions. Conse-
quently, EEG recordings are limited in their spatial resolution, and can
only provide a generalized perspective on the underlying neural pro-
cesses. On the other hand, single-neuron recordings in animals have
been restricted to specific brain regions, hindering the ability to pro-
vide a conclusiveanswer tohow thebrain represents the entirety of the
decision process. Here, we recorded LFPs directly from the human
brain and evaluated localized high-frequency γ activity, which is a
surrogate of multi-unit discharge activity47,48. These neural signals
provided direct evidence acrossmultiple brain regions that the human
brain can implement decisions in a gradedmanner. Even thoughmulti-
unit activity and LFPs are tightly correlated47,48, and the standard
model states that LFPs/EEG are the extracellular currents primarily
reflecting summed postsynaptic potentials of pyramidal cells71, the
empirical literature linking EEG, LFPs, and microcircuit neural
dynamics is under-explored72–74. Therefore, the findings of our study
should be interpreted explicitly within localized, high-frequency
neural discharges, and under the assumption that neuronal dis-
charges constitute the primary code of decision-related neuronal
signaling.

Our study has three limitations, which are common to decision
tasks performed in laboratory settings. First, the study cannot distin-
guish exactly which factors (e.g., urgency, reward expectation, speed-
accuracy tradeoffs, etc.) the DV-related γ activity represents. The gra-
ded γ activity could represent the DV itself, the confidence in a choice,
or any other correlated variables. As such, the graded effects reported
here should be interpreted as decision-related. Nonetheless, regard-
less of which exact decision-related variable is represented, our study
highlights its graded nature. Second, although it has been argued that
sensory-motor decisions studied in the laboratory setting are likely
based on the same deliberative processes as decisions encountered in
real life15, this assertion remains to be demonstrated by recording
neural activity in naturalistic decision-making scenarios33. Our study,
which engaged human subjects with varying mapping between evi-
dence and effectors, takes a step in this direction while still tightly
controlling for the temporal aspect of the evidence accumulation.
Third, it is important to stress that only a subset of the recorded
regions showed modulation by the DV at the time of choice. It is,
therefore, possible that there are other regions involved in evidence
accumulation towards a bound besides those inspected here.
Implanting electrodes into many more brain regions (including deep
brain regions) would help to address this matter.

In summary, we report neural evidence for a graded nature of the
decision process. Intracranial recordings suggest that the humanbrain
possesses the capacity for processing evidence and making choices in
a flexible, analog manner. Such analog decision-related representa-
tions do not require an all-or-none conversion, whichmay constitute a
substrate for the flexible choice behavior common to human decision-
makers.

Methods
Subjects
Local field potential (LFP) neural activities were recorded using intra-
cranial electrodes implanted in 8 humans (5 males, 3 females, 6 right-
handed, 2 left-handed, aged 15–57 (mean ± s.d. age of 39 ± 15), recor-
ded from July/2012 to February/2020; Fig. S1). The subjects underwent
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surgery for temporary placement of subdural grid electrodes (7 sub-
jects) or intracerebral stereotactical electrodes (1 subject) to localize
their epileptogenic focus. All subjects had normal cognitive capacity
(mean± s.d. IQ of 94.5 ± 17.2), normal hearing, normal or corrected-to-
normal vision, andwereable toperform the highly controlled task. The
grid electrodes consisted of platinum-iridium contacts, which were
4mm in diameter (2.3mm exposed) with an inter-electrode
distance of 6 or 10mm. The stereotactical electrodes consisted of
platinum/iridium contacts 0.8mm in diameter and spaced 3.5mm
apart (contact length 2mm, insulation length 1.5mm). We limited our
analysis to electrode contacts distant from epileptic foci, and used
contacts distant from areas of interest for reference and ground. The
study was approved by the Institutional Review Board of Albany
Medical College. All subjects gave informed consent to participate in
the study. For subjects below the ageof 18 years, informedconsentwas
obtained from their legal guardians.

Data Collection
The subjects were positioned in front of a flat-screen monitor that
presented the visual stimuli (17” diagonal size, 60 cm distance). The
auditory stimuli were delivered using headphones (MDR-V600, Sony).
The stimuli consisted of a train of brief (0.2ms) click sounds drawn
from a homogeneous Poisson distribution. The stereo stimulus was
composed such that the sumof clicks presented to the left ear (Cl) plus
the sum of clicks presented to the right ear (Cr) summed to a fixed
number Cl +Cr = 50 in 2 s. Each train lasted for up to 2 s. Consecutive
clicks were spaced by at least 5ms, and the initial click in each trial
occurred in both ears simultaneously46. For each train, the subjects
determined whether they perceived more clicks in the ear con-
tralateral or ipsilateral to the intracranial recording hemisphere. They
were free to indicate their choice during any time of the auditory
presentation via the joystick or saccade. The auditory stimulus ceased
upon a choice. The hand contralateral to the recording hemisphere
rested on a pillow placed on a fixed table while holding a joystick
(Logitech Attack 3). Subjects were instructed to simultaneously press
the front and top buttons using their index finger and thumb,
respectively. We used the two-finger response to potentially engage a
wider network of the movement planning circuitry compared to if we
had only used the response of a single digit. Additionally, we recorded
surface electromyographic (EMG) activity from anterior forearm
muscles to track the muscle activity during each decision. In total, we
placed five surface electrodes (pre-gelled disposable Ag/AgCl EMG
electrodes) on the forearmmuscles. Four electrodes were arranged as
a 2 × 2 grid with an inter-electrode distance of 2 cm horizontally and
vertically. They were placed on the flexor digitorum superficialis
muscle. One electrode was placed on the first dorsal interosseous
muscle. An additional EMG electrode was placed on an electrically
neutral tissue as the ground for EMG recording. The eye gaze position
of each eye wasmeasured 60 times/second using an eye tracker (Tobii
T60, Tobii Technology) integrated into the flat-screenmonitor. Neural
signals and EMG signalswere simultaneously amplified and sampled at
1200Hz in a manner that prevents aliasing (g.USBamp/g.HIamp bio-
signal acquisition devices, g.tec). Synchronized acquisition of neural
signals, EMG signals, eye gaze, joystick responses, and task control
(Fig. 2a) was accomplished with BCI200075.

Task
Each trial started with the visual presentation of a red fixation cross, 2
visual degrees in size (Fig. 2b). Subjects had tomaintain fixation within
2 visual degrees. After acquiring fixation, two icons appeared 15 visual
degrees to the left and right to the fixation cross. The icons and
auditory stimuli were presented on the sides contralateral and ipsi-
lateral to the recording hemisphere. The icon at the contralateral side
was a sketch of a joystick. The icon at the ipsilateral sidewas a sketch of
an eye. At the same time, subjects listened to a binaurally presented

auditory stimulus with a maximum duration of 2 s. Subjects had to
determine whether they heard more clicks in the contralateral or
ipsilateral ear. Subjects were free to indicate their choice during any
time of the auditory presentation via the joystick or saccade. The
auditory stimulus ceased upon a choice. In the congruent task context
(Fig. 2b, top), if subjects heardmore clicks in the contralateral ear, they
simultaneouslypressed the front and the topbuttons of the joystick. In
contrast, if subjects heard more clicks in the ipsilateral ear, they
directed a saccade to the eye iconon the ipsilateral sideof themonitor.
This contingency was flipped in the reversed task context (Fig. 2b,
bottom).Handmovementonsetwas taken as the timeatwhich thefirst
button was pressed. The eye movement onset was taken as the time at
which the eye gaze startedmoving away from the fixation target with a
certain velocity criterion (2% of the maximum velocity). We corrected
the eyemovement onset by ameasured 33ms latency of the Tobii T60
eye tracker. If subjects broke fixation for more than 150ms, pressed
any button before the auditory stimulus onset, responded with both
button press and eye movements, or failed to indicate a response
within 2 s following the stimulus onset, the trial was aborted and
excluded from analyses. The type of failed responses was indicated to
the subjects in red and large-font text (fixation break: TOO EARLY; no
response: TOO LATE; response with bothmovements: MOVED BOTH).
A successful choicewas communicated to the subject by shrinking the
icon corresponding to the choice (the eye icon or the joystick icon)
from 2 visual degrees in size to 1 visual degree in size. After subjects re-
acquired fixation and released all buttons, they were given visual
feedback for 0.65 s indicating whether they were correct. A correct
response was indicated by a green text (+20c), while an incorrect
responsewas indicatedby a red text (−20c). The offset of feedbackwas
followed by a 0.1 s inter-trial interval. We collected n = 7 sessions in the
congruent task and n = 6 sessions in the reversed task. Subjects per-
formed only one task type (congruent or reversed) in each session.
Specifically, 7 subjects performed the congruent task, 6 subjects per-
formed the reversed task, and 5 subjects performed both tasks
(Fig. S1c). Overall, an average of 212 (84–490) and 245 (90–434) trials
per session were analyzed during saccade (SC) and button press (BP)
choices, respectively (mean (min–max), n = 13). Across the sessions,
valid trials constituted 55.2 ± 18.1% (mean± s.d, n = 13) of all trials. This
modest proportion reflects the highly controlled nature of the task.
The incorrect response trials were further excluded to eliminate the
potential confound related to error response (Fig. S1c). Importantly, to
avoid the potential mixing of decision difficulty and response type, we
have separated SC and BP trials throughout the manuscript. The ana-
lysis of the congruent and reversed data was also performed
separately.

Decision variable
To capture the choice behavior of subjects in this task, we devised a
decision variable (DV) according to signal detection theory15. In parti-
cular, a simple DV constructed from discrete, independent pieces of
evidence (click sounds) can be evaluated using the logarithm of the
likelihood ratio of either choice (Fig. 2c):

DV ðtÞ= log LRðtÞ=
Xi = t

i= 1

log
PðeijSCÞ
PðeijBPÞ

, ð1Þ

where the sum runs from the first click (i = 1) up to the last click (i = t)
occurring prior to or at time t; ei is the i-th click (right- or left-click);
P(ei∣choice) is the probability of ei in a given choice. For example,
P(ei(left-click)∣SC) is the probability that a click is a left-click given a SC
choice and analogously for the 3 other combinations of the arguments
of P (i.e., P(ei(left-click)∣BP), P(ei(right-click)∣SC), P(ei(right-click)∣BP)).
These probabilities were computed from the frequencies of the
summed left (or right) clicks over all trials of a given choice70. We
define the DV at the time of choice as the DV value 100ms preceding
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movement onset (Fig. S4b), and grouped the data for a given correct
choice into terciles of growing evidence for that choice, i.e., LO (low),
ME (medium), and HI (high). Therefore, each evidence level has the
same number of trials for a given choice kind in each session. We
further calculated theDV slope byusing a linear fitting of DVwithin the
range of 200ms after stimulus onset to the time of choice.

Data preprocessing
Prior to performing analyses, we visually inspected the signals recor-
ded from all electrodes and excluded those that exhibited epileptic
and artifactual activity (228/799). Together, 571 electrodes in eight
subjects were included in the analyses (Fig. S1). Electrodes involved in
the congruent task session analysis were identical to those in the
reversed session. We established the anatomical locations of the
implanted electrodes by co-registering the post-operative computer
tomography image (CT) with a pre-operative magnet resonance ima-
ging (MRI) T1 image.We used FreeSurfer (version 7.2.0)76 to generate a
3D model of the cortical surface. Next, we projected the electrodes of
all subdural grid subjects onto the surfaceof the cortex, accounting for
eventual brain shifts caused by the craniotomy. To determine the
Brodmann areas (BA) in which the electrodes are located, we first
transformed the electrode locations into Talairach space, using a
standardAC-PC alignment approach77. Next, we labeled each electrode
based on annotations provided by TalairachDemon78.We analyzed the
EMG signals using the bipolar configuration, notch filtering (60 and
120Hz) the signals, band-pass filtering them between 20 and 170Hz,
and computed the envelope by taking the absolute value of the Hilbert
transform applied to the signals. All signal analyses in our study are
performed in MATLAB (2017b, Mathworks, Inc., Natick, MA). We used
Hamming-windowed sinc FIR filters for all the filtering processes
(pop_eegfiltnew(), EEGLAB, version 2022.0), which performs
forward-backward filtering to avoid time shifts by using the filtfilt()
function in Matlab.

Extracting the broadband gamma (γ) signals
The intracranial neural signals recorded from the brain were high-pass
filtered at 0.5 Hz. Spatially distributed noise common to all electrodes
was removed using a common average reference filter. We applied
notch filters to remove line noise at 60 and 120Hz. We analyzed brain
signals within the canonical broadband gamma (γ) range (Fig. S4a).
Specifically, we filtered the neural signals from each electrode at
70–170Hz, and computed the envelope by taking the absolute value of
the Hilbert transform of the resulting signal. We further z-scored the γ
signals of each electrode.

Extracting the auditory-related electrodes
To determine auditory selective locations, the subjects performed an
additional passive listening task. Specifically, subjects listened to short
stories presented with computer speakers, while neural activity was
recorded. In each trial, BCI2000 cued the subject to the task by pre-
senting thewords “listen carefully”or “stop and relax”. Each short story
lasted for 17–36 s, and was followed by a resting period of 15 s. Overall,
an average of 32 (15–53) trials per subject were analyzed. We per-
formed the same procedure as above to obtain the γ signals.

We assumed that the auditory-related electrodes should show a
significant γ increase for both the decision task (Fig. 2b) and the
passive listening task. For the decision task, we computed themean γ
during the baseline period (250ms window preceding stimulus
onset) and stimulus period (50ms to 300ms following stimulus
onset) for each trial. For the passive listening task, we computed the
bin mean (1-second bin) of the γ during the baseline period (14 s
preceding stimulus onset) and stimulus period (14 s following sti-
mulus onset) for each trial. To determine whether an electrode had a
significant auditory response, we correlated the obtained mean
values with a vector of condition labels (baseline period = −1,

stimulus period = 1), and performed a biserial rank correlation, which
provided a Spearman’s R value for each electrode. We tested the
significance of the obtained R values against a shuffled null dis-
tribution of R using a randomization test. Specifically, the condition
labels vector was randomly reordered (without replacement) and a
newly computed R value. This processwas repeated 1000 times. In all
cases, we tested for the normality of the null distribution using the
Kolmogorov–Smirnov test. We then determined the probability that
a given tested R originated from the respective null distribution. This
probability constituted the resulting p values. We corrected the
resulting p values for the number of electrodes in each subject using
a false discovery rate (FDR). Electrodes with significant (p < 0.05) γ
increase for both the decision task and passive listening task were
defined as auditory-related electrodes.

To further eliminate the possibility of a purely auditory response,
we excluded 79/571 auditory-related electrodes from eight subjects
(Fig. S1e). This has provided 492 electrodes in eight subjects for
analysis.

Identifying the effector-modulated regions
To identify the effector-modulated electrodes, for SC (BP) choice trials
of each electrode, we computed the mean of the γ activity during the
baseline period (50ms to 300ms following stimulus onset) and
effector-related period (200ms preceding to 50ms following move-
ment onset). Next, we correlated the obtained mean values with a
vector of condition labels (baseline period = −1, effector-related per-
iod = 1), which provided a Spearman’s R value.We performed the same
randomization test as above and obtained a p value (FDR corrected for
the number of electrodes in each subject). Electrodes showing
(p < 0.05) significant difference (increase or decrease) in γ activity at
response relative to baseline were identified as effector-modulated
electrodes. Specifically, among the effector-modulated regions, we
found that (72 ± 24)% and (73 ± 18)% of electrodes (mean ± s.d., n = 13)
showed significantly increased γ activity for SC and BP choices,
respectively. The remaining effector-modulated electrodes showed
significantly decreased γ activity. We included all effector-modulated
electrodes in the analysis to prevent biased selection. Electrodes
showing significant γ modulation for both SC and BP choices were
defined as SC&BP-modulated electrodes (Fig. 3a). Electrodes showing
significant γmodulation for SC choices were defined as SC-modulated
electrodes, and significant γ modulation for BP choices as BP-
modulated electrodes (Fig. 3b). Electrodes showing significant γ
modulation in one effector type but not in another were defined as
effector-selective electrodes (Fig. S7b). The effector-related γ mod-
ulation responses were independent of the DV.

Model-free analysis
The key test in our studywas the evaluation of neural signals gradedby
DV at the time of choice (referred to as DV-graded henceforth). To
evaluate the graded effect across the SC&BP-modulated regions, we
averaged the γ activity of SC&BP-modulated electrodes, and computed
the correlation between the averaged γ with the DV at the time of
choice (Fig. S4c, Fig. 3). Specifically, we calculated the mean value of
the averaged γ activity over a 100ms window preceding movement
onset for each trial. Next, we correlated the obtained SC (BP) mean
valueswith the SC (BP)DV at the timeof choice (Fig. S4b), resulting in a
Spearman’sR value.We assessed the significance of thisR value using a
randomization test. In this test, the obtained mean values were ran-
domly reordered (without replacement) and a new R value was com-
puted, and this process was repeated 1000 times. We assessed the
significance of correlation using the same procedure as above (results
showed in Fig. 3a, b, right panel bar). To evaluate the graded effect
across the SC-modulated or BP-modulated regions, we averaged the
SC and BP γ modulated electrodes, respectively, and performed the
same correlation analysis.
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Model-based analysis
Based on the drift-diffusion model in which the cognitive processes
terminated towards a choice when the decision-related neural activity
hit a fixed bound, we made a null bounded hypothesis that the DV
would reach a bound for each decision Fig. 4a. We tested the DV-
graded effect using a linear regression model based on this null
hypothesis (Fig. S4d). Specifically, we generated amodeled SC (BP) DV
with the value linearly ramped from 0 to 1 (−1), spanning between
100ms following the stimulus onset to 100ms preceding movement
onset. Additionally, the modeled SC (BP) DV value during the 100 ms
window preceding the movement onset was 1 (−1), with the remain-
ing part being 0.We down-sampled (pop_resample() in EEGLAB) the
γ activity to 100Hz and regressed (regress() inMatlab) the γ activity
fromeffector-modulated electrodes onto themodeled SC (BP)DV. The
null hypothesis was considered true if there was no significant corre-
lation between the regressed γ activity (i.e., the predicted values from
the regression model) and the raw DV at the time of choice. Rejection
of the null hypothesis could confirm the DV-graded effect.

To evaluate the graded effect across the SC&BP-modulated
regions, we regressed the γ activity from SC&BP-modulated electrodes
onto the modeled SC (BP) DV. The time window used for the regres-
sion spanned the period from 200ms preceding the stimulus onset to
the onset of a movement. This regression provided a set of weights,
which enabled us to predict themodeled SC (BP) DV inferred from the
γ at each moment in time. Next, we calculated the mean value of the
regressed γover a 100mswindowprecedingmovement onset for each
trial, and correlated the obtained SC (BP) mean values with the raw SC
(BP) DV at the time of choice (Fig. S4b), resulting in a Spearman’s R
value. We assessed the significance of this R value using the same
randomization test in the model-free analysis. To control for the pos-
sibility of overfitting due to the high dimensionality of the linear
model, we performed a randomization test in which we randomly
shuffled the temporal relationship between the neural signals and the
modeled DV. Specifically, the γ from all SC&BP-modulated electrodes
were simultaneously circular-shifted in time by a randomly selected
amount, and a new R value was computed using the same regress
process. We repeated this process 1000 times, obtaining a null dis-
tribution of R. We assessed the significance of correlation using the
same procedure as above (results shown as shaded distribution in
Fig. 4c). Notably, the circular-shift is amore stringent test than random
shuffling as it leaves the temporal structure and thus the auto-
correlation of the γ intact (it only abolishes the temporal relationship
between the γ and the DV).

To evaluate the graded effect across the SC/BP-modulated
regions, we regressed the γ from SC-modulated and BP-modulated
electrodes onto the modeled SC DV and BP DV, respectively.

Extracting electrodes graded by DV at the time of choice
We found a graded effect for both SC and BP choices in SC&BP-
modulated and SC/BP-modulated regions (Figs. 3 and 4). Specifically,
the γ signalswere positivelymodulatedby theDV at the timeof choice.
To further evaluate the individual brain areas that contributed to this
DV-graded modulation effect, we calculated the mean value of the γ
over a 100ms window preceding movement onset for each trial and
each effector-modulated electrode. Next, we correlated the obtained
SC (BP)mean valueswith the SC (BP)DV at the timeof choice (Fig. S4b)
and performed the same randomization test as the Model-free analy-
sis. Electrodes with the γ significant (p <0.05) positively graded by SC
(BP) DV at the time of choice were defined as SC (BP)-graded elec-
trodes (Fig. 5b, Fig. S3d). Electrodes positively graded by both SC and
BP DV were defined as SC&BP-graded electrodes (Fig. 5a, Fig. S3b).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Full datasets fromour clinical recordingswill be provided to interested
researchers upon request to the corresponding authors and institu-
tional approval of a data-sharing agreement. Source data are provided
with this paper.

Code availability
The custom analysis code used to generate our results will be available
upon request to the corresponding authors.
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